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Abstract This article describes the hierarchical Bayesian approach for predicting
average hourly concentrations of ambient non-methane hydrocarbons (NMHC) in
Kuwait where records of six monitor stations located in different sites are observed at
successive time points. Our objective is to predict the concentration level of NMHC in
unmonitored areas. Here an attempt is made for the prediction of unmeasured concen-
tration of NMHC at two additional locations in Kuwait. We will implement a kriged
Kalman filter (KKF) hierarchical Bayesian approach assuming a Gaussian random
field, a technique that allows the pooling of data from different sites in order to pre-
dict the exposure of the NMHC in different regions of Kuwait. In order to increase
the accuracy of the KKF we will use other statistical models such as imputation,
regression, principal components, and time series analysis in our approach. We con-
sidered four different types of imputation techniques to address the missing data. At
the primary level, the logarithmic field is modeled as a trend plus Gaussian stochastic
residual model. The trend model depends on hourly meteorological predictors which
are common to all sites. The residuals are then modeled using KKF, and the prediction
equation is derived conditioned on adjoining hours. On this basis we developed a spa-
tial predictive distribution for these residuals at unmonitored sites. By transforming
the predicted residuals back to the original data scales, we can impute Kuwait’s hourly
non-methane hydrocarbons field.
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1 Introduction

The need to develop adequate spatial environmental models to address environmental
issues has grown rapidly in recent years around the world. Statistical modeling and
prediction of one or more pollutants generated at each of a regular series of timepoints
over non-overlapping regions of the same geographical domain have been a concern
of statisticians. For example, Carroll et al. (1997) studied ozone exposure in Harris
county, Texas, Tonellato (2001) analyzed the concentration of carbon monoxide CO2
in the city of Venice, Shaddick and Wakefield (2002) considered sulphur dioxide SO2,
nitrogen oxide NO, carbon monoxide CO and PM10, for London over a 4-year time
period, Zidek et al. (2002) dealt with particulate matter PM10 for the city of Vancou-
ver; Kibria et al. (2002) predicted PM2.5 exposure for Philadelphia, and Huerta et al.
(2004) considered hourly readings of concentration of ozone O3 over Mexico City.
Al-Awadhi and Al-Awadhi (2006) dealt with daily readings of non-methane hydrocar-
bons for the state of Kuwait along with nitrogen oxide, carbon monoxide and sulfur
dioxide.

Temporal and spatial interpolation were first approached using the method of Kri-
ging, for example Rouhani and Mayers (1990), Mardia and Goodall (1993), Cressie
(1993) and Mardia et al. (1998). Bayesian methodology for both temporal and spatial
interpolation has been developed in the past decade as an alternative to space–time
Kriging, for example, Le and Zidek (1992) and Brown et al. (1994). Both approaches
assume an underlying spatial process with responses that are functions of their
locations.

This paper is motivated by an analysis of air quality data for the state of Kuwait to
predict the concentration level of non-methane hydrocarbon compounds (NMHC) in
unmonitored areas. It applies the Bayesian kriged Kalman filter (BKKF) method to
the problem of modeling fields of NMHC. Non-methane hydrocarbon compounds are
organic molecules present in the atmosphere produced by the processes of extracting
and refining oil in Kuwait, including combustion and volatilization. Internal com-
bustion engines with unburned fuel emissions, solvents, particularly paints, lique-
fied petroleum gas or natural gas leakage are the main sources of NMHC in addi-
tion to industrial and domestic sources, such as decoration, chemical factories and
power plants. All the above mentioned activities have effects on the environment
and on public health, as confirmed by ecologists in Kuwait (Alsayed 2008, 2009).
Owing to their high reactivity and flux, increasing non-methane hydrocarbons lead to
an increased production of ozone. Kuwait Environment Public Authority (EPA) has
specified the concentration of non-methane hydrocarbons for morning hours shall not
exceed 0.24 ppm. AbdulWahab and Bouhamra (2004), Al-Awadhi et al. (2005) have
shown that the levels of NMHC exceed the proposed ambient air quality standard for
residential areas in Kuwait. Al-Awadhi (2011) used a multivariate Bayesian approach
for predicting hourly exposure of NMHC assuming that the response will follow a
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multivariate Gaussian distribution with an isotropic covariance matrix. The lifetimes
of the non-methane hydrocarbons vary from a few minutes to several months for some
of the lighter alkane. Therefore, a temporal effect exists between the hourly records
up to certain limits. To reduce the computation time, she used a multivariate approach
of the spatial process to predict hourly non-methane levels for the six stations at a
given time using the p proceeding hours instead of using all available data. Compar-
ing different p-preceding hours to predict the next level led to a conclusion that p = 4
consecutive hours will capture enough information to predict the level of concentration
of NMHC for Kuwait with a satisfactory precision level.

In this paper, we consider a hierarchical Bayesian kriged-Kalman filtering (BKKF)
model introduced by Sahu and Mardia (2005). Spatial attribute estimation and the
associated accuracy depend on the available sampling design and statistical inference
modeling. Both the theoretical analysis and the empirical study show that the mean
Kriging technique outperforms other commonly-used techniques. We use determin-
istic and stochastic approaches in our model. We build a model for NMHC based on
linear regression to predict the non-methane hydrocarbons for unmeasured sites in
Kuwait. In the regression model, we accommodate different meteorological effects.
For the resulting stochastic residual, we follow the BKKF approach that uses the infor-
mation gathered from monitor sites to predict unmeasured levels at unmonitored sites.
We will compare our result with the stochastic approach where we ignore modeling
the physical and chemical processes governing the spatial and temporal evolutions of
pollutant concentrations represented by the meteorology variables.

This paper is organized as follows: the general description of the data and some
explanatory analysis is discussed in Sect. 2. In Sect. 3, the general trend model is
given and explained. Detailed KKF model is described in Sect. 4 and the posterior and
the conditional distributions are derived. Section 5 illustrates the application and the
results of our proposed method. Spatial prediction for unmonitored sites is shown in
Sect. 6 with a discussion in Sect. 7.

2 Exploratory analysis of Kuwait pollution data

The data were collected from six fixed air monitoring stations operated for several
years by EPA and distributed throughout the state of Kuwait. The levels of concentra-
tion of NMHC along with different atmospheric variables are considered from 1 July
2004 to 5 September 2004. The data are recorded every 5 min continuously, 24 h a
day. The 5-min values are likely subject to extreme measurement error, hence we will
consider aggregating the data to an hourly record to obtain a 24-h reading per day for
each station.

Kuwait is a small flat desert country influenced significantly by high speed wind;
thus the atmospheric concentration levels of its areas are interrelated. Therefore, it is
important to pool the information gathered from different monitored sites to model
the concentration of NMHC.

Each of the six monitoring stations, Mansouriya (Site 1), Rabiya (Site 2), Riqqa
(Site 3), Um-Alhayman (Site 4), Jahra (Site 5) and Um-Alayesh (Site 6), is located in
areas that differ significantly in their surroundings, geographical characteristics and
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the sources of air pollution. Figure 1 shows the locations of these monitoring stations
along with their surroundings.

Mansouriya is a typical urban residential and commercial area that is impacted by
heavy traffic of the capital city. It gives a clear picture of pollutants from automobiles
and local sources. The source of pollutants for the second monitoring station, Rabiya,
are Kuwait airport, a sewage plant and Al-Ray industrial area. Riqqa is a semi-coastal
urban area surrounded by petroleum refineries and industrial plants. The pollutants
in Riqqa are influenced by the sea breeze. Um-Alhayman is a coastal urban region
situated in the southern part of Kuwait. It is surrounded by oil wells, an oil port, petro-
chemical and oil industry plants, as well as other plants. Jahra is an urban residential
and commercial area situated in the north of Kuwait surrounded by a power plant, oil
fields, an industrial area and a sewage plant. Um-Alayesh is a deserted rural area in
the northern part of Kuwait.

At most stations, some data are missing. The percentage of missing data at dif-
ferent stations is given for Site 1 (14.96 %), Site 2 (10.49 %), Site 3 (7.76 %), Site 4
(11.77 %), Site 5 (18.35 %) and Site 6 (24.76 %). Missing data is an ubiquitous problem
in evaluating long term experimental measurements. Different techniques can be used
to impute the missing values to keep the full sample size (see for example West and
Harrison 1997; Rubin and Little 2002; Zhu et al. 2003; Fitzmaurice et al. 2009; Pollice
and Lasinio 2009). Some imputation methods are simple and some are sophisticated.
So far, no method has been commonly accepted and the imputation methods used
are largely dependent on the researchers’ choice. An important criteria to consider is

Fig. 1 Kuwait map verifying location of the six monitoring stations along with their surroundings
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the standard deviation or the correlations between the observations. We do not want
to underestimate or overestimate; that is, we want to keep the nature of the records
unaffected as much as we can.

We used four different approaches for imputation; imputation 1: simple random
imputation, imputation 2: regression prediction using the meteorological regressors
such as wind speed, relative humidity, temperature and week days. Imputation 3: lin-
ear spatial regression which predicts the missing data in a specific station using the
NMHC data of other stations. This method is a modification of using the mean of
the relative measures of the different sites to replace the missing of each site and
it overcomes the under-estimation of the standard deviation of the data. Imputation
4 applies MCMC method assuming the data from multivariate normal distribution.
Data augmentation is applied to Bayesian inference with missing data to converge to a
distribution P(Ymis |Yobs) (Dempster et al. 1977) using the expectation-maximization
(EM) to provide a good starting point.

The four different imputation methods produced different results. We display a
sample of time series plots of the resulted NMHC data in Figs. 2 and 3 for station 1
and station 6 using the four imputation methods as well as the original data set. Our
criteria for selecting the optimal method is to keep least changes in the variance-covari-
ance matrix of the data. We used log-likelihood ratio statistic for testing the equity of
the variance-covariance matrices of the original data set and the resulting data after
the imputation. All had significant results, the least chi-quare testing value occurred
when applying imputation 3, hence linear spatial regression imputation is considered.

The data is transformed by taking the natural logarithm to be a normally distributed
random response, after which some statistical techniques such as trend surface plot,

Fig. 2 NMHC data for station 1 using different imputation methods (imputation 1: simple random impu-
tation, imputation 2: regression prediction using the meteorological regressors, imputation 3: linear spatial
regression, imputation 4: MCMC imputation)
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Fig. 3 NMHC data for station 6 using different imputation methods (as above if Fig. 2)
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Fig. 4 Trend surfaces for the NMHC in Kuwait by gray scale plot

correlation and time series plot are applied to identify the features of the data. Trend
surfaces describe the behavior of the data with respect to space. For our data, it is
obvious by observing Figs. 4 and 5 that the pollutant levels increase in the south-west
near the refineries and oil wells. Moreover the increase is in the direction of prevailing
wind directions north-west and south-east.

Table 1 displays the variances of the logged NMHC for the six stations on the
diagonal and the values of the correlation coefficient below the diagonal. The symbol
(*) on the values of the correlation coefficients in the table indicates the significance
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Fig. 5 Trend surfaces for the NMHC in Kuwait by perspective plot

Table 1 The variance of the logged NMHC on the diagonal for the six stations and the values of the
correlation between them below the diagonal

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Site 1 0.420

Site 2 0.815∗ 0.459

Site 3 0.293∗ 0.288∗ 0.860

Site 4 0.084∗ 0.167∗ 0.059∗ 0.709

Site 5 0.533∗ 0.609∗ 0.395∗ 0.317∗ 0.400

Site 6 0.214∗ 0.157∗ 0.380∗ −0.053∗ 0.348∗ 0.229

The symbol (*) indicates the significance of the correlation values at 0.05 level

Fig. 6 Time series plots for the logged NMHC for the six stations (top: stations 1–3, bottom: stations 4–6)

at 0.05 level. Site 3 has the largest variation, which was expected as it is surrounded
by many factories and is affected by the sea breeze and pollution from the other sites.
The lowest variation is recorded for Site 6 a deserted rural area. The high values of the
correlation coefficients between Site 1, Site 2 and Site 5 show the influence of factors
like wind on the concentration of the pollutants in nearby places.
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The analysis of time series plots illustrating the hourly variations in the average
concentration of NMHC for the six sites (Fig. 6) demonstrates that it follows different
patterns for various stations. The atmospheric concentration of NMHC at each station
is affected by many meteorological and geographical factors including climatology,
traffic, height of surrounding buildings, power plants, oil refineries, and emissions
from factories. These factors play a crucial role in determining the level of concentra-
tion of NMHC. The trends of NMHC for Sites 1 and 2 are alike due to the similarities
of the two areas. For Site 6 the trend is found to be nearly constant.

In the next section, we describe the underlying space–time model for the NMHC in
Kuwait, and in particular we find a trend model that incorporates not only structural
time trends but meteorology as well.

3 The trend model

For a data set with an apparent trend, both ordinary kriging and universal kriging
may considered (Journel and Rossi 1989). Their estimators appear as a sum of a trend
and residual components. The trend component in the ordinary kriging approach is
expressed as a constant term while in the universal kriging it is split into a number
of pre-specified subcomponents. Let Y ∗(s, t) be the logarithm of the NMHC level at
hour t = 1, . . . , T, and space s = 1, . . . , S. Our spatial-temporal model for hourly
ambient NMHC has the simple form

Y ∗(s, t) = R(s, t) + Y (s, t) (3.1)

Here R(s, t) represents the site-consistent deterministic component that incorpo-
rates hourly and daily effects, Y (s, t), the error term which represents the spatial-tem-
poral correlation structure due to other sources of variation or factors.

Temperature (temp), relative humidity (rh) and wind speed (ws) recorded at Kuwait
Airport are considered for the study. All the variables were standardized to reduce the
collinearity among the variables included in the models. These selected meteorologi-
cal components (M) were then incorporated into the full trend model. Time is another
variable compounded in this model; therefore hours (O), day (D) and the linear trend
(L) is added. Thus the model is given as

R(t, s) = μ + O(s, t) + D(s, t) + L(s, t) + M(s, t), (3.2)

where μ is the overall effect.
Table 2 gives the regression statistics for the six sites. Wind speed (ws), time (t)

and temperature (temp) have significant influence on the records. The hour of the
day and the day of the week may reflect the influence of traffic. It is noted from the
regression analysis (not shown here) that comparatively higher values are shown dur-
ing late night hours, as the NMHC concentration rises from 5 p.m. till early morning
and then declines during the day time, signifying a negative relation with temperature.
Moreover, in these hours the humidity traps the pollutants from dispersing. The least
concentration occurs during 1–3 p.m. For the weekly cycle, the highest levels occur
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Table 2 Regression statistics for logged NMHC at Sites 1–6

Source DF MS1 MS2 MS3 MS4 MS5 MS6

Constant 1 49.58 203.19 1, 261.48 200.76 466.40 2395.27

Week 6 10.55 22.05 2.564 7.91 1.031 1.657

Hour 23 13.51 7.84 17.83 19.24 1.80 1.05∗
t 1 172.69 16.30 66.35 1, 529.38 179.82 10.75

Temp 1 44.97 3.46 8.50 152.78 0.53∗ 2.00

rh 1 24.58 0.35∗ 146.07 248.92 2.24 4.36

ws 1 873.60 375.21 808.35 266.73 33.62 26.68

Temp× rh 1 21.24 9.07 1.05∗ 34.94 3.03 69.18

Temp×ws 1 181.68 1.22 10.03 16.41 19.63 1.01∗
rh×ws 1 173.06 1.60 4.19 33.41 2.13 9.16

The symbol (*) indicates the non significance at 0.05

Table 3 The variance of Y on the diagonal and the correlation between the residuals of the six sites below
the diagonal

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Site 1 0.240

Site 2 0.229∗ 0.255

Site 3 0.161∗ 0.170∗ 0.493

Site 4 0.071∗ 0.052∗ 0.002 0.253

Site 5 0.136∗ 0.294∗ 0.064∗ 0.105∗ 0.239

Site 6 0.162∗ 0.110∗ 0.282∗ −0.020 0.118∗ 0.141
The symbol (*) indicates the significance of the correlation values at 0.05 level

during the weekend (Friday and Saturday), and the lowest toward the end of the week.
Site 6, being a rural area, shows a uniform level of NMHC, confirming that emissions
play an important role in building up NMHC levels.

The correlation matrix for the residuals, Y (t, s), resulting from the regression anal-
ysis is given in Table 3. The highest variation is for Site 4 followed by Site 3. A
reduction is noticed in the values of the correlation without changing their order.
The spatial-temporal effect exists and is dealt with using the kriged Kalman filter
approach.

4 The kriged Kalman filter approach (KKF)

The kriged Kalman filter approach (Mardia et al. 1998) combines the kriging method,
named after the mining engineer D. G. Krige in the 1950s and which deals with the
spatial effects, with the Kalman filtering method, which concerns the temporal effects.
Kriging was discussed by many authors such as Ripley (1988), Cressie (1993), and
Chilès and Delfiner (1999). It is used to make an inference about an unobserved value
of a random process Y (·) = (Y (s1), . . . , Y (sN )) based on an observed data at N
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known spatial locations {s1, . . . , sN }. It assumes that the data Y is composed of two
main components: a mean term and a zero mean stochastic error,

Y (s) = μ(s) + ε(s), s ∈ S. (4.1)

Assuming the process Y (·) is Gaussian and that the conditional expectation of Y (·)
given the data Y ; E(Y (s)|Y ) = μ(s) is linear in Y and depends only on μ(s) =
E(Y (s)), and the covariance function of the process is of the second order stationary
and isotropic as well,

cov(Y (s), Y (s′)) = σ(s, s′) = σ(s′ − s).

The general form of the kriging assumes that the mean of Y is an unknown linear
combination of q functions

{
f1(s), . . . , fq(s)

}
, that is Y (s) = f (s)Tβ + ε(s), where

β = (β1, . . . , βq)T is a vector of coefficients of length q which represents the number
of spatial components. Hence, under the assumption of Gaussian random field

E(Y (s)|Y ) = f (s)Tβ + σ(s)T�−1(y − Fβ), (4.2)

where (�)i j = σ(si , s j ), σ (s)T = (σ (s, s1), . . . , σ (s, sN )) and the i th row of F is
given by ( f (si ))

T, i = 1, . . . , q, the optimal predictor for the unobserved value Y (s)
is the conditional expectation of Y (s) given Y = y,

Ŷ (s) = E(Y (s)|Y = y) = f (s)T Ay + σ(s)T By, (4.3)

where B = �−1 −�−1 F(FT�−1 F)−1 FT�−1 and A = (FT �−1 F)−1 FT�−1. The
Kalman filter originally developed by Kalman (1960) and Kalman and Bucy (1961)
is also practiced by many statisticians (see Huang and Cressie 1996; Meinhold and
Singpurwalla 1983).

Let Yt , t = 1, . . . , T be the observed values of N -variables of interest at time t .
The observation equation which specifies an assumed linear relationship between Yt

and an unobserved quantities αt of dimension p is given by

Yt = Hαt + εt , (4.4)

where H is a known N × p matrix. The error term is assumed to have a multivariate
normal distribution (MVN) with zero mean and covariance �ε . The state equation αt

changes over time,

αt = Pαt−1 + Kηt , (4.5)

where P is the transition matrix of dimension p × p, K represents the innovation
parameter matrix of dimension p × p and the disturbance term ηt is assumed to have
a MVN distribution with zero mean and covariance �η of dimension p × p.
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The kriged and Kalman filter model (KKF) which combines both the kriging and
Kalman filter approaches is expressed as

Y (s, t) = h(s)Tαt + εt , (4.6)

where αt as given in the state equation (4.5), Y (s, t) denotes the observation at time
t and site s, h(s) = (hs, . . . , hsp)

T, αt = (αt1, . . . , αtp)
T and εt � N (0, σ 2

ε ). It is
assumed that εt and ηt are independent for all t and that the initial information about
α0 can be quantified as MVN distribution with zero mean and covariance matrix
�0.

The transition matrix P can be obtained using the dynamic linear model (Mardia
et al. 1998) or by converting an ARMA model to state space model (Aoki 1990). The
matrix H = h(s)T is of size N × p and represents the spatial component in the model.
The first q columns in H are the coefficients of the trend field and the remaining
p − q columns are the principle fields and represent the spatial directions relative to
the covariance function

�γ = σγ (si , s j ) = σ 2
γ e−λdi j , λ > 0, (4.7)

where di j is the Euclidean distance between si and s j ,λ,and σ 2
γ and unknown param-

eters.
If F is the matrix of the first q columns of H and �γ is the covariance matrix

calculated using the above covariance function then, the bending energy matrix B can
be determined by B = �−1

γ −�−1
γ F(FT�−1

γ F)−1 FT�−1
γ . The p − q columns of H

are corresponding to the smallest non-zero eigen values of B, which means that the
principal fields with high degree of variability are chosen.

4.1 The Bayesian KKF model

The formulation of KKF model in a Bayesian framework is mentioned here by giving
the prior specifications of the unobserved parameters in the model, determining the
likelihood function, performing the posterior analysis and deriving the full conditional
distributions of the parameters.

4.1.1 Prior specification

It is assumed that σ 2
ε , �0 and �η are independent. As our likelihood is a member of

an exponential family, it is common to use a conjugate prior which is from the same
family; hence, we describe our prior knowledge about τε = 1

σ 2
ε

by a noninformative

gamma distribution, and set its parameters a and b to 0.001. Let �0 = C0 I and set C0
to be 100. Moreover, Qη = �−1

η is assumed to have Wishart prior distribution with
parameters aη and βη, where aη is the prior degrees of freedom which is chosen to be
2 and βη is a positive definite matrix and it is chosen to be 0.01I where I denotes a
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p × p identity matrix. Consequently, the joint prior distribution for α0, τε and Qη is
given by

π
(
α0, τε, Qη

) = π
(
α0)π(τε |a, b)π(Qη|aη, βη

)

= C
− p

2
0 e− 1

2 αT
0 (C0 I )−1α0

ba

(a)
τ a−1
ε e−bτe |βη|

aη
2 |Qη|

aη−p−1
2 e− 1

2 tr(βη Qη).

= ba

(a)
C

− p
2

0 |βη|
aη
2 |Qη|

aη−p−1
2 τ a−1

ε e− 1
2 {αT

0 (C0 I )−1α0+tr(βη Qη)}−bτε .

(4.8)

4.1.2 Likelihood function

We assume that εt ∼ MV N (0, τ−1
ε I ) and Kηt ∼ MV N (0, K Q−1

η K T). The likeli-
hood function for the KKF model given the observations, L(α0, α1, . . . , αt , . . . , αT ,
τε, Qη; Y1 . . . , YT ), is proportional to

T∏

t=1

1

| τ−1
ε I | 1

2

exp

{
−1

2
εT

t τε I εt

}
1

| K Q−1
η K T | 1

2

exp

{
−1

2
(Kηt )

T (K T)−1 Qη K −1 (Kηt )

}

=
T∏

t=1

| K |− 1
2 | Qη | 1

2 | K T |− 1
2 τ

n
2

ε exp

{
−1

2
εT

t τε I εt + (Kηt )
T (K T)−1 Qη K −1 (Kηt )

}
.

Substitute εt = Yt − Hαt and Kηt = αt − Pαt−1, to get

T∏

t=1

| K |− 1
2 | Qη | 1

2 | K T |− 1
2 τ

n
2

ε

exp

{
−1

2
[(yt − Hαt )

Tτε I (yt − Hαt ) + (αt − Pαt−1)
T(K T)−1 Qη K −1(αt − Pαt−1)].

}

After simple calculations, we get

| K |− T
2 | Qη | T

2 | K T |− T
2 τ

T n
2

ε exp

{

−1

2

T∑

t=1

[(yt − Hαt )
T

τε I (yt − Hαt ) + (αt − Pαt−1)
T(K T)−1 Qη K −1(αt − Pαt−1)]

}

. (4.9)
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4.1.3 Posterior analysis

Given the likelihood function (4.9) and prior specifications (4.8), the posterior distri-
bution π(α0, α1, . . . , αt , . . . , αT , τε, Qη|Y1 . . . , YT ) is proportional to

ba

(a)
C

− p
2

0 |K |− T
2 |Qη|

T +aη−p−1
2 |K T|− T

2 |βη|
aη
2 τ

T n
2 +a−1

ε

exp

{

−1

2

{
T∑

t=1

[(yt − Hαt )
Tτε I (yt − Hαt ) + (αt − Pαt−1)

T
(

K T
)−1

Qη K −1(αt − Pαt−1)] + αT
0 (C0 I )−1α0 + tr(βη Qη)

}

− bτε

}

(4.10)

4.1.4 Conditional distributions

The full conditional distributions are needed for the Gibbs sampler algorithm. The
conditional distribution of α0 is

π(α0|α1, . . . , αT , τε, Qη) = π(α0|α1) ∼ MV N (μ0, �0) (4.11)

where

μ0 = (PT(K T)−1 Qη K −1 P + (C0 I )−1)−1(PT(K T)−1 Qη K −1α1),

and

�−1
0 = PT(K T)−1 Qη K −1 P + (C0 I )−1.

The full condition distribution of αt given α0, . . . , αt −1, αt +1, . . . , αT , τε, Qη,

for 0 < t < T, is

π(αt |α0, . . . , αt−1, αt+1, . . . , αT , τε, Qη) ∼ MV N (μt , �t ) , (4.12)

where

�−1
t = HTτε I H + (K T)−1 Qη K −1 + PT(K T)−1 Qη K −1 P,

and

μt = (HTτε I H + (K T)−1 Qη K −1 + PT(K T)−1 Qη K −1 P)−1

(HTτε I yt + (K T)−1 Qη K −1 Pαt−1 + PT(K T)−1 Qη K −1αt+1).

The full conditional distribution of αT is

π(αT |α0, . . . , αT −1, τε, Qη) ∼ MV N (μT , �T ) , (4.13)
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where

�−1
T = HTτε I H + (K T)−1 Qη K −1,

and

μT = (HTτε I H + (K T)−1 Qη K −1)−1(HTτε I yT + (K T)−1 Qη K −1 PαT −1).

The full conditional distribution of τε given all other parameters is Gamma distri-
bution,

π(τε |α0, . . . , αT , Qη) ∼  (α, θ) (4.14)

where α = a + Tn
2 and θ = 1

2

∑T
t=1(yt − Hαt )

T(yt − Hαt ) + b.

The full conditional distribution of Qη is Wishart,

π(Qη|α0, . . . , αT , τε) ∼ Wp(m, R), (4.15)

where m = aη + T and R = βη + ∑T
t=1(K T)−1(αt − Pαt−1)(αt − Pαt−1)

T K −1.

5 Application

We consider the error component resulting from the regression equation (3.1). The
number of time points, T , is 1,609 and the number of sites is equal to 6. A compar-
ison of Table 3 with Table 1 reveals that some spatial correlation has been removed
but some significant correlation still exists. The next step is to constructing the KKF
model for the error component.

5.1 Implementation of Bayesian KKF model

We apply principal component analysis for the possibility of reducing the dimension-
ality of the data and to look for relationships that were not previously suspected.

A spectral decomposition of the covariance matrix yields six principal components
with eigenvalues 0.198, 0.149, 0.107, 0.043, 0.024 and 0.017 respectively. The first
principal component explains 36.7 % of the total variation, the first two components
64.4 %, the first three components 84.4 %, the first four components 92.4 % and the
first five components 96.9 %. A scree plot in Fig. 7 shows the importance of the four
principal components.
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Fig. 7 A screen plot shows the importance of the principal components

For the matrix H we choose q = 1 because a constant field reflects overall levels
in the series, and p − q = 4 which are the principal fields. This matrix is given by

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −0.567 0.275 0.354 −0.049
1 0.638 −0.165 −0.233 −0.135
1 −0.330 −0.587 −0.128 −0.421
1 0.252 0.654 0.108 −0.208
1 −0.243 0.132 −0.664 0.617
1 0.199 −0.327 0.593 0.615

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The matrix of the distance between sites d is given

d =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
30.66 0
26.99 8.29 0
46.64 26.88 22.68 0
62.71 47.30 42.27 20.50 0
39.56 48.44 52.00 74.54 94.23 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The prior specification for the unknown parameters σ 2
ε , �0and �η, λ = 0.05 and

σ 2
γ = 0.5. The P and K matrices which are used in the state equation are obtained by

identifying an ARMA model from the averages of the coefficients of ARMA models
of all sites. The AIC criterion selects an order three auto-regressive model AR(3) with
no moving average components hence, K is a zero matrix. This model is converted to
a state-space model as mentioned in Aoki (1990) and it is found that

P =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0.675 0.014 0.058 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.
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Fig. 8 Cross validation test for Site 2 and Site 4 without using the meteorological variables

Fig. 9 Cross validation for Site 2 and Site 4 using the meteorological variables

5.2 Cross validation

We apply cross validation to test the accuracy and the efficiency of our approach. The
variation of the data differs between the stations. Records of Site 4 have high variance
while the readings of Site 2 have low variance, therefore we use these two sites for
cross validation. The predicted values for the two sites using the other stations, is
obtained and compared with the actual values to observe the efficiency of our method
with and without adding meteorological variables. The actual and the predicted val-
ues for Site 2 and Site 4 are plotted without using the meteorological variables in
Fig. 8 and with using meteorological variables in Fig. 9. Using the meteorological
variables, the resulted sum square error for Site 2 and Site 4 are 272.03 and 806.64
respectively. Without the meteorological variables, the resulted sum square error for
Site 2 and Site 4 are 651.11 and 1,475.36 respectively. The significant decrease in
sum square error implies good evidence of the improvement of the accuracy of the
predicted data and supports the efficiency of our modified extended model where we
added meteorological variables.

The error components Y (s, t), t = 1, . . . , 1, 609; s = 1, . . . , 6 and the predicted
values Ŷ (s, t) using Bayesian KKF model and incorporating meteorological variables
are plotted in Fig. 10 and the NMHC data Y ∗(s, t) and the predicted values Ŷ ∗(s, t)
are plotted in Fig. 11.

Table 4 displays the sum of squares for the predicted terms of different stations for
the stochastic terms Y and for NMHC data Y ∗ at the six different sites. Site 6 has the
smallest sum of squares, as its data is approximately uniformly distributed followed
by Site 1, 2 and 5 respectively. Site 4 has the largest sum of squares, reflecting the
large variation within its data.
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Fig. 10 Times series plots for the stochastic residual Y (s, t) and Ŷ (s, t)s = 1, . . . , 6, t = 1, . . . , 1, 609
for the six stations

Fig. 11 Times series plots for the NMHC data Y ∗(s, t) and Ŷ ∗(s, t), s = 1, . . . , 6, t = 1, . . . , 1, 609 for
the six stations

Table 4 Sum of squares for the predicted terms of different stations for the stochastic terms Y and for
NMHC data Y ∗ at different stations

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
Y 62.42 74.49 152.54 254.99 77.51 33.05

Y ∗ 245.99 288.27 535.45 632.34 224.05 145.97

6 Spatial prediction

Our aim is to predict the NMHC values for the unmonitored sites at any given time
point. The covariates for these sites are same as before, the model is flexible to accom-
modate different covariate values for each station. The algorithm extends to add two
additional locations plus the six existing monitoring sites in Kuwait. Figure 12 shows
the proposed locations named Position 7 and Position 8. We first obtain the spatial
covariance matrix �γ in (4.7) using the Euclidean distances between the two new
locations and the other six locations through their latitude and longitude.

The forecast of Y ∗
t at the proposed sites is shown in Fig. 13. One can observe more

fluctuation in Position 8 than in Position 7 because of the position of each site. Position
8 is located close to stations 1, 2 and 3 and is affected by these high variance stations.
On the other hand, Position 7 is located between site 5 and site 6, which are more
homogenous stations and hence the variation is not high.
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Fig. 12 Position of the six monitor sites and the two additional sites

Fig. 13 Time series for the predicted values of NMHC for the two new sites

7 Discussion

In this study, we have extended the Bayesian KKF model to incorporate a regression
technique and accommodate meteorological variables. The spatio-temporal model is
used to predict the NMHC for the unmonitored sites using the data obtained from
regions of Kuwait. The accuracy of the predicted values is better when adding these
covariates. The proposed model is efficient and easily accounts for the behavior of the
space–time process and allows inclusion of other additional covariates. It is flexible
even when applying different values for these variables for different sites. We used
the model to predict the values for two unmonitored sites, but it can be extended to
more sites at any given time point. Spatial-temporal data usually suffers from missing
values and has high variation. To overcome the missing value problem, we applied and
compared four different imputation methods and found the optimal one for this study.
For the high variation problem, one can use t student distribution as an alternative
to the normal likelihood distribution; however, the complexity of the resulting model
should be tested against the efficiency of the model.
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